

Embracing a changing society: Diversity in construction

#CECEcongress

CECE CONGRESS CHAMONIX 2023

Batteries for Construction Machines

#CECEcongress

Batteries for Construction Machines January 2023

www.kgpauto.com

3

KGP Services

- Subscription based
- Quarterly Updates on CV, NRMM, Marine, Powergen
- Engine, Driveline, Electrification, Emissions
- Fuels and Energy
- Focus on reducing Noxious and Carbon Emissions

Outlook - Geographic Production

POWERTRAIN INTELLIGENCE

Short Term Production Forecast

Outlook – NRMM Powertrains – AG, CE, MH

xEV Penetration Forecast by Region (Fuel Economy Scenario)

Outlook - Regional Emissions Legislation

Market	Short Term Outlook (2Y)	Medium Term Outlook (2-5Y)
*1	Shift to China State IV (Tier 4i/Stage IIIB equivalent) plus PN limit requiring DPF for all engines above 37kW.	Stage V equivalent expected to be drafted but not implemented until post 2025.
	Stage V for all engines (56-130kW to be implemented in 2020).	Additional regulations for SI engines. Possible ultra low NO _x . Possible CO ₂ legislation for non-road. Possible EU Stage VI c. 2030-2032
	Bharat Stage IV which is equivalent to EU Stage IV for all engines above 37kW (75% of Indian production is below 37kW).	Stage V equivalent legislation introduced in 2024 – timing is an issue. Legislating below 8kW could present electrification opportunity for the low power Indian market
	No Major Change – Stage IV Equivalent as of 2015.	Stage V equivalent legislation uncertain – key Japanese engine and equipment OEMs have Stage V technology available for European Export.
	No major change – Stage IV equivalent implemented in 2015.	Stage V equivalent still uncertain.
	Se major non-road change. Ssible low emission zone implementation in ports. Zero Emissions under <19kW possible, timing uncertain.	CARB Tier 5 Low NOx & Low PM by 2028. Requires EPA to support, but significant aftertreatment challenges associated. EPA Tier 5 possible c. 2028-30.
	Stage IIIA equivalent introduced in 2015 through 2019. Staggered approach for Construction and Agriculture applications.	Stage IIIB legislation still uncertain.

Methodology

Investment

Finance, Investors, Subsidies, Business Models...

All of the factors listed below are analysed, evaluated and separated into three scenarios – each looking at a different potential future. Each scenario
is then applied to the NRMM Forecast to create an accurate and robust forecast model for hybridisation and electrification penetration potential across
three scenarios. Fuel Economy (base case); Fuel Economy & Environment (mid case) and Climate Change Target - IPCC 1.5 (high case).

Supply Chain Investment Priorities

Tipping Point Reached?

Amount of CO₂ emissions by scope3

sectⁱ publ > Japanese

XGP

POWERTRAIN INTELLIGENCE

Independent Practitioner's Assurance 🗹

Category	Rate (%)	Summary Data kt-CO ₂
Scope3 (11)Customer Use	88.4	27,310
Scope3 (1)Manufacturing of Purchasable Goods	10.1	3,105
Scope3 (2)Capital Goods Construction and others	0.4	121
Scope3 (3)Fuel Procurement	0.4	116
Scope3 (4)Upstream Transportation disposal	0.3	108
Scope3 (5)Waste Transportation	0.0	13
Scope3 (6)Business Trips	0.2	50
Scope3 (7)Commuting	0.2	52
Scope3 (8)Upstream Leased Assets Operation	-	-
Scope3 (9)Downstream Transportation	-	-
Scope3 (10)Processing Sold Products	-	-

EXECUTIVE DEPARTMENT STATE OF CALIFORNIA

EXECUTIVE ORDER N-79-20

WHEREAS the climate change crisis is happening now, impacting California in unprecedented ways, and affecting the health and safety of too many Californians; and

WHEREAS we must accelerate our actions to mitigate and adapt to climate change, and more quickly move toward our low-carbon, sustainable and

NOW THEREFORE, I, GAVIN NEWSOM, Governor of the State of California by virtue of the power and authority vested in me by the Constitution and the statutes of the State of California, do hereby issue the following Order to pursue actions necessary to combat the climate crisis.

IT IS HEREBY ORDERED THAT:

 It shall be a goal of the State that 100 percent of in-state sales of new passenger cars and trucks will be zero-emission by 2035. It shall be a further goal of the State that 100 percent of medium- and heavy-duty vehicles in the State be zero-emission by 2045 for all operations where feasible and by 2035 for drayage trucks. It shall be further a goal of the State to transition to 100 percent zero-emission off-road vehicles and equipment by 2035 where feasible.

CV vs NRMM OEM Pledges

OEMs are introducing Science Based Targets (SBTs), reporting GHG emissions

Science-based targets are a set of goals developed by a business to provide it with a clear route to reduce greenhouse gas emissions. An emissions reduction target is defined as 'science-based' if it is developed in line with the scale of reductions required to keep global warming below 2C from pre-industrial levels. Source: Jargon buster: 'Science-based targets' (edie.net)

Non-Road Equipment OEMs

Sources:

KGP Global Commercial Vehicle Powertrain Forecast KGP Global Non-Road Powertrain Forecast Q4 22

Opportunities for Low Carbon NRMM

Benefits

- Improved air quality
- Lower noise
- Lower fuel costs
- Reduced maintenance cost
- Improved productivity

Challenges

- High energy use applications
- Low volumes compared to passenger car
- Widely segmented customer demands
- Durability requirements
- Remote locations, limited infrastructure
- Battery prices, raw material availability
- Limited incentives compared to light vehicle, commercial vehicle

Opportunities

- New OEM entrants
- Optimised energy usage
- New business models
- Infrastructure and charging investment
- Batteries
- Batteries/Energy as a Service

NRMM Energy Requirements

KGP Analysis:

Estimated kWh requirement per year by Application

- High/low average hours
- Various load factors
- Battery size and cost
- 100+ segments in TCO model
- Regional energy prices
- Infrastructure costs

Significant Implications:

- Productivity
- Renewable energy demand
- Charging requirements
- Battery sizing
- TCO calculations

1000000 100000 10000 1000 MEX PC LCV <19kW MEX Bus CREX <37kW AG 20T MD Tuck 100kW WHL AG 300kW 100kW HD Truck ADT

Source: Caterpillar, John Deere, CNHi, Kubota, Komatsu, XCMG, Liugong, Wacker Neuson, etc... KGP Analysis

NRMM Battery Pricing

Light Vehicle Cell Prices

Volume battery cells for NRMM will be based on automotive cells, for volume reasons, as well as investment. Combining battery type, size, chemistry and volumes into a single analysis is difficult. The summary below shows the automotive cell price, and a range of the pack price for non-road. Smaller 48V as found in Mini-Excavators or Compact Construction equipment are being sourced from Automotive or Materials Handling (Forklift) vendors. Larger cells may be custom for NRMM, and also used in energy storage, rail, marine applications

Raw material pricing, and automotive demand is however increasing prices in the short term, and there may be a period of levelling out before falling after 2025.

NRMM Battery Pack Prices

NRMM Electrification Technologies

Below is KGPs analysis of the characteristics of key electrification architectures for NRMM equipment. These technologies are explored in more detail throughout this report, but the examples below gives a concise view of available electrification types. The environmental impact and operational suitability for each of the architectures is also looked at briefly in the table below, but explored in greater detail throughout the report.

KGP Analysis of xEV Architecture for Low and Zero Emission NRMM

POWERTRAIN INTELLIGENCE

NRMM Model Availability

NB: List is non-exhaustive, for example only

NRMM Model Availability

	Equipment Types	Tech Trends	Power/Voltage	Technology Transfer Segments	Number of Models
Handheld/ Extra Compact Equipment	Compaction, Mini Dumpers	AG: Battery Electric CE: Battery Electric MH: Battery Electric	^{48∨} <15kw 10-50kWh	Passenger Car Forklift	AG: 16 CE: 43 MH: 2
Compact Equipment	Mini Exc, Compact WHL, Site Dumpers, Small Ag, Rollers, Asphalt Finishers, Telehandlers, Compaction	AG: Battery Electric CE: Battery Electric MH: Battery Electric	48-90v 16-75k₩ 50-100kWh	Light Commercial Vehicle	AG: 40 CE: 110 MH: 11 Others: 9
Mid-Size Equipment	Crawler/Wheeled Exc, STL/CTL, WHL, Telehandlers Materials Handling Loaders, Forklifts, Graders, Compaction	AG: Mild Hybrid/Battery Electric/H2 CE: Battery Electric/H2 MH: Battery Electric/H2	100-300v 80-250kW 100—300kWh	Medium Duty Commercial Vehicle	AG: 14 CE: 86 MH: 19 Others: 4
Large Equipment	Crawler Exc, WHL, Mobile Cranes, Drilling/Piling Rigs, Processing Equipment, Large Tractors/Combines, Forestry, Port Handling, Large Materials Handling	AG: M.Hybrid/F.Hybrid/ H2 CE: M.Hybrid/Umbilical/ H2 MH: Umbilical/H2/Battery Electric	400-800v 250-500k₩ 0.3-1MWh	Heavy Duty/Bespoke NRMM	AG: 6 CE: 34 MH: 8 Others: 35
Extra Large Equipment	Mining Equipment, Marine, Rail	CE : Umbilical/H2 MH : H2/Umbilical	>1000∨ >560kW >1MWh	Bespoke NRMM	CE: 32 Others: 3

POWERTRAIN INTELLIGENCE

Bauma 2022 – Over 100 New xEV Models & Batteries & Other Innovations

Large Scale Batteries

- Rail, Mining, Marine all need MWh scale battery packs. Current mining haul trucks using 0.5MWh (Hitachi/ABB/Toshiba), up to ~4MWh in prototype. ProgressRail up to 14MWh Loco in assembly.
- Challenges related to cell types, durability, operating conditions (high or low ambient, dust, vibration), high C rates, cost, availability
- For Mining durability relates to high C rates, some applications need pre-heating, others advanced cooling
- Will need regular replacement due to high hours, with current chemistries.
- Variability of application demands mean some packs will need replacing regularly.
- Limited testing data on long term performance to date.

Requirement	Short Term	Future	
Pack Size	0.5-4MWh	0.5-10MWh	
Cell Format	Cylindrical/Prismatic	Cylindrical/Prismatic	
Cell Chemistry	LFP (NMC/LTO?)	LFP (LFMP/LNO?)	
Cooling	Air/Liquid	Advanced Liquid	
Energy Density	<150Wh/Kg	>200Wh/Kg	
Cycle Life	2000-2500	3000+	
C Rate	1-2C	2C+	
Cost (Pack)	>\$250kWh	<\$200kWh	

Large Scale Batteries

Liebherr – Fortescue – WAE Technologies 1.4MWh Prototype

15 tonnes, measures 3.6m long, 1.6m wide and 2.4m high, and is made up of eight sub-packs, each with 36 modules, all individually cooled and each with its own battery management system.

POWERTRAIN INTELLIGENCE

Nyobolt Technology Advantage

Mining Haul Truck Simulation Study shows 18% improvement in operational efficiency 50-70% reduction in operational cost

www.nyobolt.com

Energy Availability

CO₂ Emissions by End Use 2020-2050

Annual Renewable Energy Investment

Annual Infrastructure Investment

Source: IEA World Energy Outlook 2021

Scenario, NZE - Net Zero Scenario

80

60

40

20

Thousand TWh

POWERTRAIN **INTELLIGENCE**

NRMM Long Term xEV Outlook

Full Hybrid Battery/Umbilical Electric Mild Hybrid Hydrogen 100% Fuel Economy (000s) 80% 60% 40% 20% 0% 2025 2030 2035 2040 2045 2050 100% Fuel Economy & Environment (000s) 80% 60% 40% 20% 0% 2025 2030 2035 2040 2045 2050 100% 80% IPCC 2.0 (000s) 60% 40% 20% 0% ⊥_ 2025 2030 2035 2040 2045 2050 100% 1.5 (000s) 80% 60% 40% PCC 20% 0% 2025 2030 2035 2050

KGP's base view flexed with four scenarios To meet Net Zero the IPCC 1.5 has a very

- To meet Net Zero the IPCC 1.5 has a very rapid shift to zero carbon solutions
- H₂ ICE likely go grow in all scenarios
- Optimised job site for all machines will reduce absolute fuel consumption

Figure 24. xEV Production by Type - Four Scenarios

POWERTRAIN INTELLIGENCE

KGP NRMM Energy Environmental Scenario

POWERTRAIN NTELLIGENCE

Starting to see potential for greater decarbonisation in Non-Road, up from 2018/2019

Contacts

CALL OR EMAIL US

- For a discussion about your company's requirements call or email us
- ► To receive regular free updates send your email address to <u>subscribe@kgpauto.com</u>

AUTOMOTIVE INTELLIGENCE	Alex Woodrow Managing Director	AUTOMOTIVE INTELLIGENCE	James Dorling Senior Consultant - NRMM	AUTOMOTIVE INTELLIGENCE	Paris Kiernan Senior Consultant - CV
Knibb Gormezano & Partners	alexwoodrow@kgpauto.com	Knibb Gormezano & Partners	jamesdorling@kgpauto.com	Knibb Gormezano & Partners	pariskiernan@kgpauto.com
1st Floor, St Katherines House, Mansfield Road,	\$\overline\$ +44 (0)1332 856 301	1st Floor, St Katherines House, Mansfield Road,	\$\overline\$ +44 (0)1332 856 301	1st Floor, St Katherines House, Mansfield Road,	\$ +44 (0)1332 856 301
Derby, DE1 3TQ, UK	+44 (0)7545 787 971	Derby, DE1 3TQ, UK	+44 (0)7525 052 009	Derby, DE1 3TQ, UK	+44 (0)7453 239 605
www.kgpauto.com			www.kgpauto.com		www.kgpauto.com

► Or for our free newletter use:

www.tinyurl.com/KGPPowertrainNews

Acronyms

AG - Agricultural Equipment **APU - Auxillary Power Unit** AWP - Aerial Work Platform **BEV – Battery Electric Vehicle BET - Battery Electric Truck** CAGR - Compound Annual Growth Rate CCC - Closed Coupled Catalysts **CE** - Construction Equipment CH₄ - Methane CO₂ - Carbon Dioxide CSR - Corporate Social Responsibility CV – Commercial Vehicle DOC – Diesel Oxidation Catalyst **DPF** – Diesel Particulate Filter EGR - Exhaust Gas Recirculation FCEV – Fuel Cell Electric Vehicle FLT - Fork Lift Truck $GHG - Greenhouse Gas (CO_2, CH_4 etc.)$ **GVW** - Gross Vehicle Weight HCCI - Homogeneous Charge Compression Ignition HDT - Heavy-Duty Truck (>15t GVW) HDV - Heavy-Duty Vehicle HEV - Full Hybrid Electric Vehicle ISC/ISM - In-service Compliance/Monitoring LEZ – Low Emission Zone LULUCF - Land use, land-use change and forestry

MDT - Medium-Duty Truck (6-15t GVW) MH - Materials Handling Equipment NDC - Nationally Determined Contribution NH₃ - Ammonia N₂O - Nitrous Oxide NO₂ - Nitrogen Dioxide NOx - Nitrogen Oxides NRMM - Non-Road Mobile Machinery OBD – On-board Diagnostics PHEV – Plug-in Hybrid Electric Vehicle PM - Particulate Matter PN - Particulate Number PTO - Power Take Off RCCI - Reactivity Control Compression Ignition **REV - Range Extended Vehicle** SCR - Selective Catalytic Reduction TCO – Total Cost of Ownership TTW – Tank to Wheel V2V – Vehicle to Vehicle Communication VECTO – Vehicle Energy Consumption Calculation Tool WTT - Well to Tank WTW – Well to Wheel **ZECV - Zero Emission Commercial Vehicle ZEV - Zero Emission Vehicle** ZEZ - Zero Emission Zone

26

Thank you for your attention!

#CECEcongress